# Curved line

This time we are looking on the crossword puzzle clue for: Curved line.
it’s A 11 letters crossword definition.
Next time when searching the web for a clue, try using the search term “Curved line crossword” or “Curved line crossword clue” when searching for help with your puzzles. Below you will find the possible answers for Curved line.

We hope you found what you needed!
If you are still unsure with some definitions, don’t hesitate to search them here with our crossword puzzle solver.

### Random information on the term “Curved line”:

In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is significant, and they are sometimes identified by their position in an ordered tuple and sometimes by a letter, as in “the x-coordinate”. The coordinates are taken to be real numbers in elementary mathematics, but may be complex numbers or elements of a more abstract system such as a commutative ring. The use of a coordinate system allows problems in geometry to be translated into problems about numbers and vice versa; this is the basis of analytic geometry.

The simplest example of a coordinate system is the identification of points on a line with real numbers using the number line. In this system, an arbitrary point O (the origin) is chosen on a given line. The coordinate of a point P is defined as the signed distance from O to P, where the signed distance is the distance taken as positive or negative depending on which side of the line P lies. Each point is given a unique coordinate and each real number is the coordinate of a unique point.

### Random information on the term “Arc”:

In Euclidean geometry, an arc (symbol: ⌒) is a closed segment of a differentiable curve. A common example in the plane (a two-dimensional manifold), is a segment of a circle called a circular arc. In space, if the arc is part of a great circle (or great ellipse), it is called a great arc.

Every pair of distinct points on a circle determines two arcs. If the two points are not directly opposite each other, one of these arcs, the minor arc, will subtend an angle at the centre of the circle that is less than π radians (180 degrees), and the other arc, the major arc, will subtend an angle greater than π radians.

The length (more precisely, arc length) of an arc of a circle with radius r and subtending an angle θ (measured in radians) with the circle center — i.e., the central angle — is

This is because

Substituting in the circumference

and, with α being the same angle measured in degrees, since θ = α/180π, the arc length equals

A practical way to determine the length of an arc in a circle is to plot two lines from the arc’s endpoints to the center of the circle, measure the angle where the two lines meet the center, then solve for L by cross-multiplying the statement: